3,087 research outputs found

    New analytic solutions of the collective Bohr hamiltonian for a beta-soft, gamma-soft axial rotor

    Full text link
    New analytic solutions of the quadrupole collective Bohr hamiltonian are proposed, exploiting an approximate separation of the beta and gamma variables to describe gamma-soft prolate axial rotors. The model potential is a sum of two terms: a beta-dependent term taken either with a Coulomb-like or a Kratzer-like form, and a gamma-dependent term taken as an harmonic oscillator. In particular it is possible to give a one parameter paradigm for a beta-soft, gamma-soft axial rotor that can be applied, with a considerable agreement, to the spectrum of 234U.Comment: (Dipartimento di Fisica ``G.Galilei'' and INFN, via Marzolo 8, I-35131 Padova, Italy) 10 pages, 3 figure

    From bridewealth to dowry? A Bayesian estimation of ancestral states of marriage transfers in Indo-European groups

    Get PDF
    Significant amounts of wealth have been exchanged as part of marriage settlements throughout history. Although various models have been proposed for interpreting these practices, their development over time has not been investigated systematically. In this paper we use a Bayesian MCMC phylogenetic comparative approach to reconstruct the evolution of two forms of wealth transfers at marriage, dowry and bridewealth, for 51 Indo-European cultural groups. Results indicate that dowry is more likely to have been the ancestral practice, and that a minimum of four changes to bridewealth is necessary to explain the observed distribution of the two states across the cultural groups

    Electromagnetic selection rules in the triangular alpha-cluster model of 12C

    Full text link
    After recapitulating the procedure to find the bands and the states occurring in the D3h\mathcal{D}_{3h} alpha-cluster model of 12^{12}C in which the clusters are placed at the vertexes of an equilateral triangle, we obtain the selection rules for electromagnetic transitions. While the alpha cluster structure leads to the cancellation of E1 transitions, the approximations carried out in deriving the roto-vibrational hamiltonian lead to the disappearance of M1 transitions. Furthermore, although in general the lowest active modes are E2, E3, â‹Ż\cdots and M2, M3, â‹Ż\cdots, the cancellation of M2, M3 and M5 transitions between certain bands also occurs, as a result of the application of group theoretical techniques drawn from molecular physics. These implications can be very relevant for the spectroscopic analysis of Îł\gamma-ray spectra of 12^{12}C

    Electric multipole response of the halo nucleus 6^6He

    Full text link
    The role of different continuum components in the weakly-bound nucleus 6^6He is studied by coupling unbound spd-waves of 5^5He by means of simple pairing contact-delta interaction. The results of our previous investigations in a model space containing only p-waves, showed the collective nature of the ground state and allowed the calculation of the electric quadrupole transitions. We extend this simple model by including also sd-continuum neutron states and we investigate the electric monopole, dipole and octupole response of the system for transitions to the continuum, discussing the contribution of different configurations.Comment: 22 pages, 10 figure

    Pairing in the continuum: the quadrupole response of the Borromean nucleus 6He

    Full text link
    The ground state and low-lying continuum states of 6He are found within a shell model scheme, in a basis of two-particle states built out of continuum p-states of the unbound 5He nucleus, using a simple pairing contact-delta interaction. This accounts for the Borromean character of the bound ground state, revealing its composition. We investigate the quadrupole response of the system and we put our calculations into perspective with the latest experimental results. The calculated quadrupole strength distribution reproduces the narrow 2+ resonance, while a second wider peak is found at about 3.9 MeV above the g.s. energy.Comment: 5 pages, 5 figure

    Electric and magnetic response to the continuum for A=7 isobars in a dicluster model

    Full text link
    Mirror isobars 7^7Li and 7^7Be are investigated in a dicluster model. The magnetic dipole moments and the magnetic dipole response to the continuum are calculated in this framework. The magnetic contribution is found to be small with respect to electric dipole and quadrupole excitations even at astrophysical energies, at a variance with the case of deuteron. Energy weighted molecular sum rules are evaluated and a formula for the molecular magnetic dipole sum rule is found which matches the numerical calculations. Cross-sections for photo-dissociation and radiative capture as well as the S-factor for reactions of astrophysical significance are calculated with good agreement with known experimental data.Comment: Accepted in EPJ

    Do extremists impose the structure of social networks?

    Full text link
    The structure and the properties of complex networks essentially depend on the way how nodes get connected to each other. We assume here that each node has a feature which attracts the others. We model the situation by assigning two numbers to each node, \omega and \alpha, where \omega indicates some property of the node and \alpha the affinity towards that property. A node A is more likely to establish a connection with a node B if B has a high value of \omega and A has a high value of \alpha. Simple computer simulations show that networks built according to this principle have a degree distribution with a power law tail, whose exponent is determined only by the nodes with the largest value of the affinity \alpha (the "extremists"). This means that the extremists lead the formation process of the network and manage to shape the final topology of the system. The latter phenomenon may have implications in the study of social networks and in epidemiology.Comment: 4 pages, 3 figure

    The electron screening puzzle and nuclear clustering

    Get PDF
    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak, show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective "screening" potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. In this letter we show that instead of an atomic physics solution of the "electron screening puzzle", the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.Comment: 6 pages, 2 figures, accepted for publication in Physics Letters
    • …
    corecore